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We present an extension of the Rouse-CCR tube model for linear entangled polymers, by incorporating
interchain repulsive excluded-volume interactions, to interpret extensional viscosity data of narrow
molecular weight distribution polystyrene melts in strong extensional flows. The expression for the
stress tensor is also adapted to account for modifications of the effective tube diameter due to flow-
induced chain stretch. Despite its simplicity, the resulting model correctly captures the extensional
rheological behavior of linear entangled monodisperse polystyrene melts already published in the
literature.
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1. Introduction

The dynamics of entangled polymer solutions and melts is
strongly affected by the entanglements between polymer chains.
The most successful theory that takes into account the effect of
entanglements is based on the tube model [1–3]. The resulting
standard tube-based models include the processes of reptation,
convective constraint release (CCR), reptation-driven constraint
release, chain stretch and contour length fluctuations (CLF). The
physical picture underlying the tube model of polymer dynamics is
that the motion of any chosen polymer chain is strongly restricted
by the presence of surrounding polymers, which create a sort of
a tube around the chosen chain. Such chains can interact strongly
due to the topological constraints that chains cannot cross each
other. The net effect of this is that the effective interchain interac-
tion is repulsive. In atomistic and coarse-grained simulations [4,5],
the interchain excluded-volume interactions ensure that different
chains do not cut through each other, and contribute significantly
to the stress when two chains try to cross each other. Such direct
excluded-volume interactions were completely neglected in stan-
dard reptation-based theories. Recently, Marrucci and Ianniruberto
[6,7] showed that data of extensional viscosity on monodisperse
polystyrene melts by Bach et al. [8] cannot be interpreted within
the available standard tube models [2,3,9]. Indeed, the data
published by Bach et al. [8] and confirmed by Luap et al. [10] on
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monodisperse polystyrene melts show that the steady-state
extensional viscosity decreases monotonically with the strain rate
without any sign of an upturn at strain rate, _3, of the order of the
reciprocal Rouse time, sR, of the chain. In order to interpret the
above mentioned extensional viscosity data, Marrucci and Iannir-
uberto [6,7] put forward the effects of the repulsive, interchain
excluded-volume interactions among chain segments, which were
neglected in standard tube theories for entangled polymers. They
proposed a model for the dynamics of tube diameter, valid only in
the range of strain rate smaller than the reciprocal Rouse time of
the chain ð_3sR < 1Þ, that is based on the concept of thermal pressure
exerted by the chain against the tube wall. In the flow range that
has been considered ð_3sR < 1Þ, chain stretch occurs as a conse-
quence of tube squeezing only. As a result, the stress was given by
an average involving both tube orientation and tube diameter, as in
the standard tube models. Therefore, this approach belongs to the
category of decoupled approximation between tube orientation
and tube diameter. We would like to emphasize that, in deriving
their standard reptation-based model, Marrucci and Ianniruberto
[3] recognized that the reason in the deficiencies in the tube model
by Ianniruberto and Marrucci [11] is the decoupling approximation,
which leads to the averages for the orientation tensor and the chain
stretching. They pointed out that chain segments carry information
on both orientation and stretching in a single quantity, that is the
end-to-end vector R, and care should be taken as to how to
manipulate the averages based on this fundamental quantity. In
this spirit, they proposed a simple model without decoupling
approximation. In the same spirit, Likhtman and Graham [12]
derived a simple single-mode equation, the Rouse-CCR tube model
rights reserved.
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for linear entangled polymers (Rolie-Poly equation), from a more
complete molecular theory. Therefore, it seems to be worthwhile to
build the analysis upon this simple molecular model, and then to
incorporate all the ingredients necessary to describe the interchain
excluded-volume interactions based on a molecular picture. This is
the approach used in the present work, without decoupling
approximation.

Wagner et al. [13] presented a generalized tube model with
strain-dependent tube diameter, known as molecular stress func-
tion (MSF) theory. In MSF theory, tube stretch is caused by
squeezing of the surrounding polymer chains, leading to a reduc-
tion of the tube diameter from its equilibrium value. The MSF
model gives quantitative description of extensional flows. We
would like also to point out that a tube-based model, with non-
circular cross section, has been examined by Ianniruberto and
Marrucci [14], but only with regard to the expression for the stress
tensor, without considering the full dynamic evolution.

In this paper, we wish to extend the original Rolie-Poly model and
to address the discrepancy between theoretical predictions and
experimental data. Specifically, Bach et al. [8] and Luap et al. [10]
showed that, in steady extensional flow the steady-state extensional
viscosity of monodisperse linear entangled polystyrene melts
decreases monotonically with the stain rate without any sign of
upturn in the vicinity of _3sRz1, and scales with _3�0:5for large
Deborah numbers. This discrepancy has been credited to the
neglecting of direct interchain excluded-volume interactions. These
interactions are included in the extended model by means of
a repulsive interaction potential. Its behavior is analyzed in exten-
sional flows and compared to experimental data of Bach et al. [8].
2. Rolie-Poly model with finite extensibility

In the original Rolie-Poly model [9,12], the conformation of the
polymer chain, s, in a flow field, u, evolves in time by an equation of
the form

_s ¼ L,sþ s,LT þ f ðsÞ; (1)

where the tensor function, f, is given by

f ðsÞ ¼ � 1
sd
ðs� IÞ � 2

sR

 
1�

ffiffiffiffiffiffiffiffi
3

trs
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(2)

Here L¼VuT is the transpose of velocity gradient tensor, sd is the
fixed-tube disengagement time or reptation time, sR is the longest
Rouse time or stretch time, b is the CCR coefficient analogous to the
coefficient introduced by Marrucci [15] in his original CCR paper,
d a negative power which can be obtained by fitting to the full
theory, and s¼ I is the equilibrium value of the conformation
tensor in the absence of flow.

We want to emphasize here that neither theory [9,12] has finite
extensibility included, which would limit the degree of strain
hardening in the stretching regime. Indeed, non-Gaussian behavior
cannot be ignored in fast flows, when chains stretch significantly. In
this spirit, Kabanemi and Hétu [16] derived a non-Gaussian version
of the Rolie-Poly constitutive equation, which accounts for finite
extensibility of polymer chains, by writing the tensor function, f,
in the following form

f ðsÞ¼�1
sd
ðs�IÞ� 2

sR
ksðlÞ
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where ks(l) is the nonlinearity of the spring coefficient accounting
for the finite extensibility of polymer chains, equals unity for linear
springs and becomes much greater than unity as the spring
becomes nearly fully stretched, and l¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
trs=3

p
is the chain stretch

ratio, and l¼ 1 is its equilibrium value in the absence of flow.
In the limit of large stretch and in the absence of any other

relaxation mechanisms, retraction, i.e., the trace of Eq. (1) with the
expression for the tensor function, f, given by Eq. (3), leads to the
desired following relaxation for the stretch

dl

dt
¼ � 1

sR
ksðlÞðl� 1Þ: (4)

This form was used in the MLD model with finite extensibility
[17]. Note that in the limit of linear spring (Gaussian chain), ks(l)
remains unity, Eqs. (1) and (3) reduce to the original Rolie-Poly
constitutive equation. The nonlinear spring coefficient, ks(l), is
approximated by the normalized Padé inverse Langevin function
[17], i.e.,

ksðlÞ ¼

�
3� l2

=l2
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1� 1=l2
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=l2

max

��
3� 1=l2
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�; (5)

where lmax is the maximum stretch ratio.
The constitutive equation, Eq. (1), with the expression for the

tensor function, f, given by Eq. (3) has to be completed by specifying
the relationship between the polymeric stress contribution sp and
the conformation tensor s.

For this purpose, let us recall that, the physical picture of the
tube model is that the motion of any chosen polymer chain is
strongly restricted by the presence of surrounding polymer chains,
which creates a sort of a tube around the chosen chain. The contour
length of the tube is given by the primitive chain length, consisting
of Z primitive path steps (subchains) which connect two consecu-
tive entanglement points. At equilibrium, the average primitive
path step or tube segment length, l0, is expected to be of the same
order as the equilibrium tube diameter a0, and the equilibrium
contour length of the whole tube is written as L0¼ Z0l0¼ Z0a0,
where Z0 is the number of subchains (entanglements) per polymer
chain at equilibrium. According to Gaussian chain statistics,
a0l0¼Ne0b2 or a0

2¼Ne0b2, where b is the length of a ‘‘monomer’’ or
a Kuhn segment, Ne0 is the number of monomers between entan-
glements at equilibrium and N¼ Z0Ne0 is the number of monomers
per polymer chain. The stretch of the tube segment, l¼ l/l0, is
assumed to be uniform along the chain contour length, where l is
the nonequilibrium tube segment length. Assuming that the
number of monomers in each subchain does not change during
flow, the entropic force in each subchain is given by

F INTRAðRÞ ¼
3kBT
Ne0b2 ksðlÞR ¼

3kBT

a2
0

ksðlÞR; (6)

where R is the end-to-end vector of the subchain, T the absolute
temperature and kB the Boltzmann constant. Assuming that the
tube diameter stays constant and equal to its equilibrium value a0,
the polymeric stress contribution due to traction along the tube
axis, sINTRA

p , is written as

sINTRA
p ¼ cZ0hF INTRARi; (7)

or by making use of Eq. (6), we can write Eq. (7) as

sINTRA
p ¼ cZ03kBTksðlÞ

hRRi
a2

0

¼ cN3kBT
b2

a2
0

ksðlÞ
hRRi

a2
0

: (8)

Here the factor cZ0, accounts for the number of subchains
(entanglements) at equilibrium per unit volume, c is the number of
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polymer chains per volume and the factor cN, accounts for the
number of monomers per unit volume. In terms of the conforma-
tion tensor, s, Eq. (8) can be written as

sINTRA
p ¼ GksðlÞðs� IÞ ¼ h0

sd
ksðlÞðs� IÞ; (9)

where G ¼ cZ03kBT ¼ cN3kBTb2

a2
0

is the plateau modulus, and h0 is
the zero- shear-rate polymer viscosity. This equation ensures that
at equilibrium the polymer stress is zero.
3. Model with a variable tube diameter

The physics that is still missing from the above model, Eqs. (1),
(3) and (9), is the deformation of the confining tube diameter itself.
It is very natural to assume that the diameter of the confining tube
changes upon deformations, as chains move closer together or
further apart. Because the tube corresponds to topological
constraints created by its surrounding, Marrucci and Cindo [18]
introduced segmental stretch, where all rheological properties are
assumed to be dominated by intramolecular forces, assuming that
the tube deforms affinely with macroscopic strain. They assumed
that whenever a subchain changes its length, the diameter of the
tube that surrounds the subchain changes, so as to keep the volume
of the tube segment constant (incompressibility assumption). Since
on the average the subchain length increases, the tube diameter
correspondingly decreases. We assume that the tube segment
keeps a circular cross section shape even under high deformation.
The effective diameter of the deformed tube, a, should shrink by
a factor,

ffiffiffi
l
p

. Thus, the primitive chain should experience topological
constraints at an average distance of

a ¼ a0ffiffiffi
l
p : (10)

Therefore, the tube diameter reduction arises as a consequence
of the tube stretch, whose dynamics is described by Eqs. (1), (3) and
(9). In rapidly changing flows, when chains stretch significantly,
l¼ l/l0>1. The average primitive path step or tube segment length,
l, is no longer of the same order as the equilibrium tube diameter a0

or the current tube diameter a. It follows that under nonequilib-
rium conditions, al ¼ Neb2 ¼ a2

0

ffiffiffi
l
p

, where Ne is the effective
number of monomers between entanglements. Thus the effective
number of monomers between entanglements during flow is
increased from Ne0 to Ne¼Ne0

ffiffiffi
l
p

and the number of subchains is
reduced from Z0 to Z¼N/Ne¼ Z0/

ffiffiffi
l
p

. Thus the entropic force in each
subchain, defined by Eq. (6), can be rewritten as

F INTRAðRÞ ¼
3kBT
Neb2

ksðlÞR ¼
3kBT
Ne0b2

ksðlÞ
1ffiffiffi
l
p R ¼ 3kBT

a2
0

ksðlÞ
1ffiffiffi
l
p R:

(11)

Unlike the entropic force derived by Marrucci and Cindo [18], Eq.
(11) accounts for finite extensibility of the chain. Therefore, the
polymeric stress contribution, sINTRA

p , is written as

sINTRA
p ¼ cZhF INTRARi ¼ cZ03kBTksðlÞ

1
l

hRRi
a2

0

; (12)

or

sINTRA
p ¼ GksðlÞ

1
l
ðs� IÞ ¼ h0

sd
ksðlÞ

1
l
ðs� IÞ: (13)

The difference between Eq. (13) and Eq. (9), which does not
include the deformation of the tube diameter, is the pre-factor, 1/l,
which now appears in Eq. (13). This expression for the stress tensor
only accounts for intrachain forces, i.e., traction along the tube
segment axis. It also accounts for the tube diameter reduction, in
terms of the stretch ratio, l, through the relation, a¼ a0/l. The
contribution to the stress arising from the direct interaction with
the surrounding chains which create a tube around the chosen
chain is still neglected in the model.

We now need to account for the pressure that the confined
chain exerts on its tube of constraints, i.e., the direct interchain
excluded-volume interactions. As described above, in the stretch-
ing regime ð_3sR > 1Þ under nonequilibrium conditions, the primi-
tive chain experiences topological constraints at an average
distance, a¼ a0/l, smaller than the equilibrium distance, a0. The
interaction between the test chain and the topological constraints
generates repulsive force acting on the beads of the chain. In order
to include the interchain, repulsive excluded-volume interactions,
the entanglement effect is assumed to be repulsive interaction
between the polymer chain in the tube and the entanglement
points (the obstacles). This is done by means of a repulsive potential
due to the topological interactions. The repulsive interchain inter-
actions are accounted for through a shifted, truncated Lennard-
Jones potential (LJ potential) acting on the chain beads [19]. The LJ
potential is given by

ULJðrÞ ¼
(

kBT
2

h�
aLJ

r

�12
�
�

aLJ

r

�6
þ1

4

i
; r � 21=6aLJ

0; r < 21=6aLJ

; (14)

and the corresponding force law obtained from this potential is

FLJðrÞ ¼ �
3kBT

a2
LJ

�
� 2
�

aLJ

r

�14

þ
�

aLJ

r

�8�
r; r � 21=6aLJ; (15)

where r is the radial vector of the circular cross section of the tube
segment, r¼ jrj ¼ a, and aLJ is the distance at which the potential is
zero. Inspired by Ianniruberto and Marrucci [14], we reinterpret
this force as due to a ‘‘virtual spring’’ which connects the bead in
the radial direction to the cylindrical surface of the tube of
constraints, i.e. the force pushing against the wall of the tube
segment. By setting aLJ, the Lennard–Jones length to the equilib-
rium tube diameter, aLJ¼ a0 (length scales comparable to the
equilibrium tube diameter), it can be shown that

FLJðrÞ ¼
3kBT

a2
0

�
2l7 � l4

�
r ¼ 3kBT

a2
0

kLJðlÞr: (16)

We emphasize that, the Lennard–Jones length could be, as well,
set to a value smaller than the equilibrium tube diameter a0, which
would reduce the length scale of the repulsive potential. The
coefficient kLJ(l)¼ (2l7�l4) in Eq. (16) is the nonlinear coefficient of
the ‘‘virtual spring’’ that is written here in terms of the stretch ratio,
l, instead of the tube diameter itself. At equilibrium, l¼ 1, and
therefore kLJ¼ 1. Thus, it is easily found from Eq. (16) that the
equilibrium force of the ‘‘virtual spring’’ becomes

FLJ ¼
3kBT

a0
: (17)

During deformation under nonequilibrium conditions, the
effective diameter of the deformed tube, a, should shrink by a factor
of

ffiffiffi
l
p

. Thus, the magnitude of the repulsive force pushing against
the wall of the tube, Eq. (16), is

FLJ ¼
3kBT

a2
0

kLJðlÞa ¼
3kBT

a2
0

kLJðlÞ
a0ffiffiffi

l
p : (18)

We assume that the repulsive force, which acts against the tube
wall, remains uniform along the axial direction. From constant



Table 1
Linear viscoelastic properties of the polystyrene melts PS200k and PS390k at 130 �C
[8]

Polymer h0 (MPa s) sd (s) sR (s) Z

PS200k 84 1040 23 15
PS390k 755 11300 130 29
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Lennard-Jones potential
PS200k experiments [Bach et al. (2003)]

Fig. 1. Steady-state extensional viscosity normalized with zero shear viscosity for
PS200k as a function of the reptation time-based Deborah number, Ded ¼ _3sd: effects
of interchain excluded-volume interactions using different interaction potentials. The
open circles represent the experimental data of Bach et al. [8].
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cylindrical tube volume arguments, a uniform radial repulsive force
on the wall of the tube becomes equivalent to traction along the
tube segment axis. Thus, the radial repulsive force also causes an
increasing of tension in the axial direction. Such a method has also
been used by Ianniruberto and Marrucci [14] who derived the
expression of the stress tensor for tubes with circular cross section
by using explicitly a confining potential. They demonstrated that,
due to the axial symmetry of the circular tube, the contribution
arising from the pressure on the wall of the confining cylindrical
tube effectively corresponds to traction alongside the tube axis.
Hence, by making use of the unit vector R/R, the corresponding
force along the tube axis can be written as

FLJðRÞ ¼
3kBT

a2
0

kLJðlÞ
a0ffiffiffi

l
p R

R
: (19)

Taking into account that during deformation the subchain
length is R¼ l¼ ll0¼ la0, we get from Eq. (19)

FLJðRÞ ¼
3kBT

a2
0

kLJðlÞ
1

l3=2
R: (20)

Therefore, the interchain repulsive, excluded-volume interac-
tions are accounting for in the model by introducing an extra term
in the intrachain tension, due to the pressure which acts against the
tube wall. Thus, the additional stress tensor can be written as

sINTER
p ¼ cZ < FLJR >¼ cZ

3kBT

a2
0

kLJ
1

l3=2hRRi

¼ cZ03kBTkLJ
1

l2

hRRi
a2

0

; (21)

or

sINTER
p ¼ GkLJðlÞ

1

l2ðs� IÞ: (22)

Hence, the total polymeric stress tensor that combines both the
intrachain tension and the interchain interactions is written in the
following form

sp ¼ sINTRA
p þ sINTER

p ¼ G
�

ksðlÞ
1
l
þ kLJðlÞ

1

l2

�
ðs� IÞ: (23)

As is apparent from Eq. (23), the stress tensor results from
traction in the axial direction (intrachain interactions) and inter-
chain repulsive interactions (due to the pressure that the confined
chain exerts on the tube wall) which is included as an extra term in
the intrachain tension. Eq. (23) also accounts for the tube diameter
variation, in terms of the stretch ratio, l, through the relation,
a¼ a0/l.

Finally, the expression for the tensor function, f, given by Eq. (3)
used in the constitutive equation, Eq. (1), has to be modified by
using an effective spring coefficient that combines both ks and kLJ,
i.e, keff¼ kLJþks, instead of the sole spring coefficient ks. Therefore,
the effects of interchain, excluded-volume interactions are included
in the dynamic equation, Eqs. (1) and (3), through the effective
spring coefficient. The consequence of using an extra term in the
intrachain tension on the rheology of linear entangled polymers is
analyzed in the following section.

As an alternative to the LJ potential, we have also employed
a purely repulsive potential for which the spring coefficient of the
‘‘virtual spring’’, kLJ, is replaced by an exponential coefficient, kexp,
given by

kexpðlÞ ¼ exp
h
3a
�

l2 � 1
�i
: (24)
With the proper choice of the parameter a, this force law
coefficient is shown to predict the proper power law dependence,
as discussed in the next section.
4. Uniaxial extensional flow

In order to understand the behavior of the Rolie-Poly model
with the direct interchain excluded-volume interactions, we
performed steady steady-state uniaxial extensional flow simula-
tions, and compared the predictions with the experimental results.
The fluid parameters are those of the polystyrene polymer melts
(PS200k and PS390k) studied experimentally by Bach et al. [8].
These are given in Table 1. The two time scales, sd and sR, are related
by sd¼ 3ZsR [20]. The other fluid parameters used in the model are:
b¼ 0.1, and d¼�0.5. The maximum stretch ratio is set to lmax¼ 4.5,
in the nonlinear spring coefficient, Eq. (5). It has been shown that
this value of lmax is appropriate for PS melts [10]. Let us now
analyze, in Fig. 1, the effect of interchain, repulsive excluded-
volume interactions, by means of the LJ potential and a purely
repulsive exponential potential with various parameter a. Fig. 1
shows the extensional viscosity, hel, as a function of the reptation
time-based Deborah number, Ded ¼ _3sd. The parameters used are
those of the polystyrene PS200k. Overall, the model predicts
a monotonic decrease in extensional viscosity without showing any
sign of an upturn well beyond, _3sR ¼ 1. This behavior is only due to
the interchain excluded-volume interactions between polymer
chains. The initial drop from the Newtonian value is due to tube
orientation in the elongation direction. We also note that the slope
of the extensional viscosity hel depends on the interaction potential
field used to characterize the interactions between polymer chains
and seems to slightly decrease at very high Ded. With a proper
choice of the parameter a, the exponential repulsive potential gives
good qualitative and quantitative predictions, as highlighted in
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Fig. 2. Steady-state extensional viscosity normalized with zero shear viscosity for
PS200k and PS390k as a function of the reptation time-based Deborah number,
Ded ¼ _3sd, compared to the experimental data of Bach et al. [8]: effects of interchain
excluded-volume interactions, with a¼ 5.
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interactions, with a¼ 5.
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Fig. 1. The major feature of these results is the dependence of the
slope of the extensional viscosity on the strength of the repulsive
potential.

Now we perform a quantitative comparison with the experi-
mental data of Bach et al. [8], in uniaxial extensional flow. The
steady steady-state curves of the extensional viscosity as a function
of the reptation time-based Deborah number Ded, for PS200k and
PS390k are shown in Figs. 2 and 3. The predicted extensional
viscosity curves decrease monotonically with the strain rate
without any sign of upturn in the vicinity of _3sRz1. The effect of
interchain excluded-volume interactions is further highlighted in
Fig. 3, which also includes the extensional viscosity prediction in
the absence of excluded-volume interactions. We observe that, the
extension thinning behavior becomes more pronounced in the
absence of interchain excluded-volume interactions. Moreover,
unlike the experimental data, we observe an upturn of hel at _3sR > 1
(which corresponds to Ded> 30) when excluded-volume interac-
tions are not included. In this case, predictions become sensitive to
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Fig. 3. Steady-state extensional viscosity normalized with zero shear viscosity for
PS200k as a function of the reptation time-based Deborah number, Ded ¼ _3sd,
compared to the experimental data of Bach et al. [8]: effects of interchain excluded-
volume interactions using different interaction potentials.
the value of the maximum stretch ratio and, the extensional
viscosity ultimately saturates when the chains become fully
stretched. This trend of the extensional viscosity, hel, was confirmed
experimentally for monodisperse entangled PS solutions only [20],
and can be explained as follows. The initial drop from the New-
tonian value is due to tube orientation in the elongation direction
that, in the absence of chain stretch, would saturate the extensional
stress [3]. Hence, in the absence of interchain excluded-volume
interactions, the extensional viscosity decreases, approaching the
slope �1 in the log plot (dashed-dot-dot line in Fig. 3). However, at
higher elongation rates and in the absence of interchain excluded-
volume interactions, excessive chain stretch makes the viscosity
increase. Finally, finite extensibility brings the viscosity to a satu-
ration value [3] (dashed-dot-dot line in Fig. 3). Conversely,
according to the model developed here that incorporates interchain
excluded-volume interactions, whenever a subchain changes its
length, the diameter of the tube which surrounds the subchain
changes, so as to keep the volume of the tube segment constant
(incompressibility assumption). As mentioned previously, in such
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Fig. 5. Steady-state stretch ratio, l, for PS200k as a function of the Rouse time-based
Deborah number, DeR ¼ _3sR: effects of interchain excluded-volume interactions using
different interaction potentials.
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Fig. 6. Transient extensional stress response for PS200k at various strain rates as
a function of the Hencky strain, compared to the experimental data of Bach et al. [8].
Predictions are obtained using the exponential potential with a¼ 5.
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a situation, due to the shrinkage of the tube diameter, the primitive
chain experiences topological constraints at an average distance,
a¼ a0/l, smaller than the equilibrium distance, a0. The interaction
between the test chain and the topological constraints generates
a large repulsive force which, in turn, prevents excessive chain
stretching. Hence, when interchain excluded-volume interactions
are accounted for, the extensional viscosity decreases, approaching
the slope �0.5 in the log plot that depends on the strength of the
repulsive potential. Furthermore, when a purely repulsive
exponential potential is used, a reasonable quantitative agreement
between predictions and experimental data for entangled PS melts
is obtained as shown in Figs. 1–3. This potential contains only one
adjustable parameter, a. We would like to point out that, although
the extensional viscosity predicted by using the LJ potential did not
show any sign of an upturn well beyond _3sR ¼ 1, it fails to predict
the correct slope of the extensional viscosity. As an alternative to
Fig. 2, we show in Fig. 4 the predicted steady-state extensional
stress for the two polystyrene melts as a function of the Rouse
time-based Deborah number, DeR ¼ _3sR. In the stretching regime
for which, _3sR > 1, the steady-state extensional stress predictions
for PS200k and 390k give almost the same results and fall onto
a unique curve.

In Fig. 5, we display the steady-state stretch ratio for PS200k as
a function of the Rouse time-based Deborah number, DeR ¼ _3sR.
For comparison, Fig. 5 also includes results without excluded-
volume interactions in the model. In the stretching regime
ð_3sR > 1Þ, the steady-state stretch prediction without exclude-
volume interactions becomes sensitive to the value of the
maximum stretch ratio and, an overly rapid rise of the chain stretch
toward its maximum extensibility is observed. When excluded-
volume interactions are include, the model predicts a gradual
increase of the chain stretch with the strain rate, without reaching
its full extension, at least in the range of strain rate investigated.
Therefore, the rapid rise of the chain stretch when excluded-
volume interactions are not included, clearly shows that classical
tube-based models with a constant tube diameter, overestimate the
deformation of the chains.

Finally, in Fig. 6 we compare the prediction of the transient
extensional stress as function of Hencky strain, in start-up of
uniaxial extensional flow to the experimental data for PS200k.
While the steady steady-state predictions are in agreement with
the experimental data, the model predicts faster growth of the
extensional stress at low strains than the one measured experi-
mentally, due to the strength of the repulsive potential.
5. Conclusions

We have presented an extension of the Rouse-CCR tube model
for linear entangled polymers (Rolie-Poly constitutive equation),
which incorporates interchain repulsive excluded-volume interac-
tions to interpret extensional viscosity data of narrow molecular
weight distribution polystyrene melts in extensional flow. The
rheological behavior of the model was favorably compared with
various results already published in the literature for entangled
monodisperse polystyrene melts [8] and the regime of extensional
thinning observed by Bach et al. [8] was correctly predicted. This
regime extends well beyond _3sR > 1, as noted by Luap et al. [10].
Particularly, the predicted degree of chain stretching suggests that,
in the regime of strain rate investigated here and in Bach et al., the
chains did not reach their full extension.
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